
Hunspell – The free spelling checker

About Hunspell
Hunspell is a spell checker and morphological analyzer library and program designed for
languages with rich morphology and complex word compounding or character encoding.
Hunspell interfaces: Ispell-like terminal interface using Curses library, Ispell pipe
interface, OpenOffice.org UNO module.

Main features of Hunspell spell checker and morphological analyzer:
- Unicode support (affix rules work only with the first 65535 Unicode characters)
- Morphological analysis (in custom item and arrangement style) and stemming
- Max. 65535 affix classes and twofold affix stripping (for agglutinative
 languages, like Azeri, Basque, Estonian, Finnish, Hungarian, Turkish, etc.)
- Support complex compoundings (for example, Hungarian and German)
- Support language specific features (for example, special casing of
 Azeri and Turkish dotted i, or German sharp s)
- Handle conditional affixes, circumfixes, fogemorphemes,
 forbidden words, pseudoroots and homonyms.
- Free software (LGPL, GPL, MPL tri-license)

Usage
The src/tools dictionary contains ten executables after compiling (or some of them are
in the src/win_api):

affixcompress: dictionary generation from large (millions of words) vocabularies
 analyze: example of spell checking, stemming and morphological analysis
 chmorph: example of automatic morphological generation and conversion
 example: example of spell checking and suggestion
 hunspell: main program for spell checking and others (see manual)
 hunzip: decompressor of hzip format
 hzip: compressor of hzip format
 makealias: alias compression (Hunspell only, not back compatible with MySpell)
 munch: dictionary generation from vocabularies (it needs an affix file, too).
 unmunch: list all recognized words of a MySpell dictionary

After compiling and installing (see INSTALL) you can run the Hunspell spell checker
(compiled with user interface) with a Hunspell or Myspell dictionary:

hunspell -d en_US text.txt

or without interface:

hunspell
hunspell -d en_UK -l <text.txt

Dictionaries consist of an affix and dictionary file, see tests/ or
http://wiki.services.openoffice.org/wiki/Dictionaries.

Using Hunspell library with GCC
Including in your program:

#include <hunspell/hunspell.h>
Linking with Hunspell static library:

g++ -lhunspell example.cxx

Dictionaries
Myspell & Hunspell dictionaries: http://wiki.services.openoffice.org/wiki/Dictionaries

Aspell dictionaries (need some conversion): ftp://ftp.gnu.org/gnu/aspell/dict
Conversion steps: see relevant feature request at http://hunspell.sf.net.

László Németh
nemeth at OOo

1

Table of Contents
Hunspell usage notes..3

NAME..3
SYNOPSIS...3
DESCRIPTION...3
OPTIONS...4
EXAMPLES..8
ENVIRONMENT..8
FILES...9
SEE ALSO...9
AUTHOR...9
BUGS...9

Hunspell dictionary development...10
NAME..10
DESCRIPTION...10
GENERAL OPTIONS...11
OPTIONS FOR SUGGESTION..12
OPTIONS FOR COMPOUNDING...15
OPTIONS FOR AFFIX CREATION...17
OTHER OPTIONS..18
Morphological analysis..20
Optional data fields..20
Twofold suffix stripping..22
Extended affix classes..23
Homonyms...23
Prefix--suffix dependencies...24
Circumfix...25
Compounds..26
Unicode character encoding...28
SEE ALSO...29

Hunspell API..30
NAME..30
SYNOPSIS...30
DESCRIPTION...31
EXAMPLE...33
AUTHORS...33

2

Hunspell usage notes

NAME
hunspell − spell checker, stemmer and morphological analyzer

SYNOPSIS
hunspell [−1aDGHhLlmnstvw] [−−check−url] [−d dict[,dict2,...]] [−−help] [−i enc] [−p
dict] [−vv] [−−version] [file(s)]

DESCRIPTION
Hunspell is fashioned after the Ispell program. The most common usage is "hunspell" or
"hunspell filename". Without filename parameter, hunspell checks the standard input.
Typing "cat" and "exsample" in two input lines, we got an asterisk (it means "cat" is a
correct word) and a line with corrections:

$ hunspell -d en_US
Hunspell 1.2.3
*
& exsample 4 0: example, examples, ex sample, ex-sample

Correct words signed with an ’*’, ’+’ or ’-’, unrecognized words signed with ’#’ or ’&’ in
output lines (see later). (Close the standard input with Ctrl-d on Unix/Linux and Ctrl-Z
Enter or Ctrl-C on Windows.) With filename parameters, hunspell will display each word
of the files which does not appear in the dictionary at the top of the screen and allow you
to change it. If there are "near misses" in the dictionary, then they are also displayed on
following lines. Finally, the line containing the word and the previous line are printed at
the bottom of the screen. If your terminal can display in reverse video, the word itself is
highlighted. You have the option of replacing the word completely, or choosing one of the
suggested words. Commands are single characters as follows (case is ignored):

R Replace the misspelled word completely.

Space Accept the word this time only.

A Accept the word for the rest of this hunspell session.

I Accept the word, capitalized as it is in the file, and update private
dictionary.

U Accept the word, and add an uncapitalized (actually, all lower-case)
version to the private dictionary.

3

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

S Ask a stem and a model word and store them in the private
dictionary. The stem will be accepted also with the affixes of the
model word.

0-n Replace with one of the suggested words.

X Write the rest of this file, ignoring misspellings, and start next file.

Q Exit immediately and leave the file unchanged.

^Z Suspend hunspell.

? Give help screen.

OPTIONS
−
1

Check only first field in lines (delimiter = tabulator).

−
a

The −a option is intended to be used from other programs through a pipe. In
this mode, hunspell prints a one-line version identification message, and then
begins reading lines of input. For each input line, a single line is written to the
standard output for each word checked for spelling on the line. If the word was
found in the main dictionary, or your personal dictionary, then the line contains
only a ’*’. If the word was found through affix removal, then the line contains
a ’+’, a space, and the root word. If the word was found through compound
formation (concatenation of two words, then the line contains only a ’−’.

If the word is not in the dictionary, but there are near misses, then the line
contains an ’&’, a space, the misspelled word, a space, the number of near
misses, the number of characters between the beginning of the line and the
beginning of the misspelled word, a colon, another space, and a list of the near
misses separated by commas and spaces.

Also, each near miss or guess is capitalized the same as the input word unless
such capitalization is illegal; in the latter case each near miss is capitalized
correctly according to the dictionary.

Finally, if the word does not appear in the dictionary, and there are no near
misses, then the line contains a ’#’, a space, the misspelled word, a space, and
the character offset from the beginning of the line. Each sentence of text input
is terminated with an additional blank line, indicating that hunspell has
completed processing the input line.

These output lines can be summarized as follows:

4

, 23.03.09
TABS

OK: *

Root: + <root>

Compound:

−

Miss: & <original> <count> <offset>: <miss>, <miss>, ...

None: # <original> <offset>

For example, a dummy dictionary containing the words "fray", "Frey", "fry", and
"refried" might produce the following response to the command "echo ’frqy refries |
hunspell −a":

(#) Hunspell 0.4.1 (beta), 2005-05-26
& frqy 3 0: fray, Frey, fry
& refries 1 5: refried

This mode is also suitable for interactive use when you want to figure out the
spelling of a single word (but this is the default behavior of hunspell without -a,
too).

When in the −a mode, hunspell will also accept lines of single words prefixed
with any of ’*’, ’&’, ’@’, ’+’, ’−’, ’~’, ’#’, ’!’, ’%’, ’‘’, or ’^’. A line starting with
’*’ tells hunspell to insert the word into the user’s dictionary (similar to the I
command). A line starting with ’&’ tells hunspell to insert an all-lowercase
version of the word into the user’s dictionary (similar to the U command). A line
starting with ’@’ causes hunspell to accept this word in the future (similar to the
A command). A line starting with ’+’, followed immediately by tex or nroff will
cause hunspell to parse future input according the syntax of that formatter. A line
consisting solely of a ’+’ will place hunspell in TeX/LaTeX mode (similar to the
−t option) and ’−’ returns hunspell to nroff/troff mode (but these commands are
obsolete). However, the string character type is not changed; the ’~’ command
must be used to do this. A line starting with ’~’ causes hunspell to set internal
parameters (in particular, the default string character type) based on the filename
given in the rest of the line. (A file suffix is sufficient, but the period must be
included. Instead of a file name or suffix, a unique name, as listed in the language
affix file, may be specified.) However, the formatter parsing is not changed; the
’+’ command must be used to change the formatter. A line prefixed with ’#’ will
cause the personal dictionary to be saved. A line prefixed with ’!’ will turn on
terse mode (see below), and a line prefixed with ’%’ will return hunspell to
normal (non-terse) mode. A line prefixed with ’‘’ will turn on verbose-correction
mode (see below); this mode can only be disabled by turning on terse mode with
’%’.

5

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

Any input following the prefix characters ’+’, ’−’, ’#’, ’!’, ’%’, or ’‘’ is ignored,
as is any input following the filename on a ’~’ line. To allow spell-checking of
lines beginning with these characters, a line starting with ’^’ has that character
removed before it is passed to the spell-checking code. It is recommended that
programmatic interfaces prefix every data line with an uparrow to protect
themselves against future changes in hunspell.

To summarize these:

* Add to personal dictionary

@ Accept word, but leave out of dictionary

Save current personal dictionary

~ Set parameters based on filename

+ Enter TeX mode

− Exit TeX mode

! Enter terse mode

% Exit terse mode

‘ Enter verbose-correction mode

^ Spell-check rest of line

In terse mode, hunspell will not print lines beginning with

’*’, ’+’, or ’−’, all of which indicate correct words. This significantly improves running
speed when the driving program is going to ignore correct words anyway.

In verbose-correction mode, hunspell includes the original word immediately
after the indicator character in output lines beginning with ’*’, ’+’, and ’−’,
which simplifies interaction for some programs.

−−check−url

Check URLs, e-mail addresses and directory paths.

−
D

Show detected path of the loaded dictionary, and list of the search path and the
available dictionaries.

6

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
TABS

−d dict,dict2,...

Set dictionaries by their base names with or without paths. Example of the
syntax:

−d en_US,en_geo,en_med,de_DE,de_med

en_US and de_DE are base dictionaries, they consist of aff and dic file pairs: en_US.aff,
en_US.dic and de_DE.aff, de_DE.dic. En_geo, en_med, de_med are special dictionaries:
dictionaries without affix file. Special dictionaries are optional extension of the base
dictionaries usually with special (medical, law etc.) terms. There is no naming convention
for special dictionaries, only the ".dic" extension: dictionaries without affix file will be an
extension of the preceding base dictionary (right order of the parameter list needs for
good suggestions). First item of −d parameter list must be a base dictionary.

−
G

Print only correct words or lines.

−
H

The input file is in SGML/HTML format.

−h, −−help

Short help.

−i enc Set input encoding.

−L Print lines with misspelled words.

−l The "list" option is used to produce a list of misspelled words from the
standard input.

−m Analyze the words of the input text (see also hunspell(4) about morphological
analysis). Without dictionary morphological data, signs the flags of the affixes
of the word forms for dictionary developers.

−n The input file is in nroff/troff format.

−P password

Set password for encrypted dictionaries.

7

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

−p dict

Set path of personal dictionary. Default dictionary depends from the locale
settings. Without locale support, the default personal dictionary is the
$HOME/.hunspell_default.

Setting −d or the DICTIONARY environmental variable, personal dictionary
will be $HOME/.hunspell_dicname

−s Stem the words of the input text (see also hunspell(4) about stemming). It
depends from the dictionary data.

−t The input file is in TeX or LaTeX format.

−v, −−version

Print version number.

−vv Print ispell(1) compatible version number.

−w Print misspelled words (= lines) from one word/line input.

EXAMPLES
hunspell −d en_US english.html

hunspell −d en_US,en_US_med medical.txt

hunspell −d ~/openoffice.org2.4/share/dict/ooo/de_DE

hunspell *.html

hunspell −l text.html

ENVIRONMENT
DICTIONARY

Similar to −d.

DICPATH

Dictionary path.

WORDLIST

Equivalent to −p.

8

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

FILES
/usr/share/myspell/default.aff Path of default affix file. See hunspell(4).

/usr/share/myspell/default.dic Path of default dictionary file. See hunspell(4).

$HOME/.hunspell_default. Default path to personal dictionary.

SEE ALSO
hunspell (3), hunspell(4)

AUTHOR
Author of Hunspell executable is László Németh. For Hunspell library, see hunspell(3).

This manual based on Ispell’s manual. See ispell(1).

BUGS
There are some layout problems with long lines.

9

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

Hunspell dictionary development

NAME
hunspell − format of Hunspell dictionaries and affix files

DESCRIPTION
Hunspell(1) requires two files to define the language that it is spell checking. The first file
is a dictionary containing words for the language, and the second is an "affix" file that
defines the meaning of special flags in the dictionary.

A dictionary file (*.dic) contains a list of words, one per line. The first line of the
dictionaries (except personal dictionaries) contains the approximate word count (for
optimal hash memory size). Each word may optionally be followed by a slash ("/") and
one or more flags, which represents affixes or special attributes. Dictionary words can
contain also slashes with the "" syntax. Default flag format is a single (usually alphabetic)
character. In a Hunspell dictionary file, there are also optional fields separated by
tabulators or spaces (spaces from Hunspell 1.2), see Optional data fields.

Personal dictionaries are simple word lists. Asterisk at the first character position signs
prohibition. A second word separated by a slash sets the affixation.

foo
Foo/Simpson
*bar

In this example, "foo" and "Foo" are personal words, plus Foo will be recognized with
affixes of Simpson (Foo’s etc.) and bar is a forbidden word.

An affix file (*.aff) may contain a lot of optional attributes. For example, SET is used for
setting the character encodings of affixes and dictionary files. TRY sets the change
characters for suggestions. REP sets a replacement table for multiple character
corrections in suggestion mode. PFX and SFX defines prefix and suffix classes named
with affix flags.

The following affix file example defines UTF-8 character encoding. ‘TRY’ suggestions
differ from the bad word with an English letter or an apostrophe. With these REP
definitions, Hunspell can suggest the right word form, when the misspelled word contains
f instead of ph and vice versa.

SET UTF-8
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’

REP 2
REP f ph
REP ph f

10

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

PFX A Y 1
PFX A 0 re .

SFX B Y 2
SFX B 0 ed [^y]
SFX B y ied y

There are two affix classes in the dictionary. Class A defines a ‘re-’ prefix. Class B defines
two ‘-ed’ suffixes. First suffix can be added to a word if the last character of the word
isn’t ‘y’. Second suffix can be added to the words terminated with an ‘y’. (See later.) The
following dictionary file uses these affix classes.

3
hello
try/B
work/AB

All accepted words with this dictionary: "hello", "try", "tried", "work", "worked",
"rework", "reworked".

GENERAL OPTIONS
Hunspell source distribution contains more than 80 examples for option usage.

SET encoding

Set character encoding of words and morphemes in affix and dictionary files.
Possible values: UTF-8, ISO8859−1 − ISO8859−10, ISO8859−13 −
ISO8859−15, KOI8-R, KOI8-U, microsoft-cp1251, ISCII-DEVANAGARI.

FLAG value

Set flag type. Default type is the extended ASCII (8-bit) character. ‘UTF-8’
parameter sets UTF-8 encoded Unicode character flags. The ‘long’ value sets
the double extended ASCII character flag type, the ‘num’ sets the decimal
number flag type. Decimal flags numbered from 1 to 65000, and in flag fields
are separated by comma. BUG: UTF-8 flag type doesn’t work on ARM
platform.

COMPLEXPREFIXES

Set twofold prefix stripping (but single suffix stripping) for agglutinative
languages with right-to-left writing system.

LANG langcode

Set language code. In Hunspell may be language specific codes enabled by
LANG code. At present there are az_AZ, hu_HU, TR_tr specific codes in
Hunspell (see the source code).

IGNORE characters

11

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

Ignore characters from dictionary words, affixes and input words. Useful for
optional characters, as Arabic diacritical marks (Harakat).

AF number_of_flag_vector_aliases

AF flag_vector

Hunspell can substitute affix flag sets with ordinal numbers in affix rules (alias
compression, see makealias tool). First example with alias compression:

3
hello
try/1
work/2

AF definitions in the affix file:

SET UTF-8
TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ’
AF 2
AF A
AF AB

It is equivalent of the following dic file:

3
hello
try/A
work/AB

See also tests/alias* examples of the source distribution.

Note: If affix file contains the FLAG parameter, define it before the AF definitions.

Note II: Use makealias utility in Hunspell distribution to compress aff and dic files.

AM number_of_morphological_aliases

AM morphological_fields

Hunspell can substitute also morphological data with ordinal numbers in affix
rules (alias compression). See tests/alias* examples.

OPTIONS FOR SUGGESTION
Suggestion parameters can optimize the default n-gram, character swap and deletion
suggestions of Hunspell. REP is suggested to fix the typical and especially bad language
specific bugs, because the REP suggestions have the highest priority in the suggestion list.

12

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

PHONE is for languages with not pronunciation based orthography.

KEY characters_separated_by_vertical_line_optionally

Hunspell searches and suggests words with one different character replaced by
a neighbor KEY character. Not neighbor characters in KEY string separated
by vertical line characters. Suggested KEY parameters for QWERTY and
Dvorak keyboard layouts:

KEY qwertyuiop|asdfghjkl|zxcvbnm
KEY pyfgcrl|aeouidhtns|qjkxbmwvz

Using the first QWERTY layout, Hunspell suggests "nude" and "node" for "*nide". A
character may have more neighbors, too:

KEY qwertzuop|yxcvbnm|qaw|say|wse|dsx|sy|edr|fdc|dx|rft|gfv|fc|tgz|hgb|gv|zhu|jhn|hb|uji|kjm|jn|iko|
lkm

TRY characters

Hunspell can suggest right word forms, when they differ from the bad input
word by one TRY character. The parameter of TRY is case sensitive.

NOSUGGEST flag

Words signed with NOSUGGEST flag are not suggested. Proposed flag for
vulgar and obscene words (see also SUBSTANDARD).

MAXNGRAMSUGS num

Set number of n-gram suggestions. Value 0 switches off the n-gram
suggestions.

NOSPLITSUGS

Disable split-word suggestions.

SUGSWITHDOTS

Add dot(s) to suggestions, if input word terminates in dot(s). (Not for
OpenOffice.org dictionaries, because OpenOffice.org has an automatic dot
expansion mechanism.)

REP number_of_replacement_definitions

REP what replacement

We can define language-dependent phonetic information in the affix file (.aff)
by a replacement table. First REP is the header of this table and one or more
REP data line are following it. With this table, Hunspell can suggest the right

13

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

forms for the typical faults of spelling when the incorrect form differs by
more, than 1 letter from the right form. For example a possible English
replacement table definition to handle misspelled consonants:

REP 8
REP f ph
REP ph f
REP f gh
REP gh f
REP j dg
REP dg j
REP k ch
REP ch k

Note I: It’s very useful to define replacements for the most typical one-character mistakes,
too: with REP you can add higher priority to a subset of the TRY suggestions (suggestion
list begins with the REP suggestions).

Note II: Suggesting separated words by REP, you can specify a space with an underline:

REP 1
REP alot a_lot

Note III: Replacement table can be used for a stricter compound word checking
(forbidding generated compound words, if they are also simple words with typical fault,
see CHECKCOMPOUNDREP).

MAP number_of_map_definitions

MAP string_of_related_chars

We can define language-dependent information on characters that should be
considered related (i.e. nearer than other chars not in the set) in the affix file
(.aff) by a character map table. With this table, Hunspell can suggest the right
forms for words, which incorrectly choose the wrong letter from a related set
more than once in a word. For example a possible mapping could be for the
German umlauted ü versus the regular u; the word Frühstück really should be
written with umlauted u’s and not regular ones

MAP 1
MAP uü

PHONE number_of_phone_definitions

PHONE what replacement

PHONE uses a table-driven phonetic transcription algorithm borrowed from
Aspell. It is useful for languages with not pronunciation based orthography.
You can add a full alphabet conversion and other rules for conversion of
special letter sequences. For detailed documentation see http://aspell.net/man-
html/Phonetic-Code.html. Note: Multibyte UTF-8 characters have not worked
with bracket expression yet. Dash expression has signed bytes and not UTF-8

14

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

characters yet.

OPTIONS FOR COMPOUNDING
BREAK number_of_break_definitions

BREAK character_or_character_sequence

Define break points for breaking words and checking word parts separately.
Rationale: useful for compounding with joining character or strings (for
example, hyphen in English and German or hyphen and n-dash in Hungarian).
Dashes are often bad break points for tokenization, because compounds with
dashes may contain not valid parts, too.) With BREAK, Hunspell can check
both side of these compounds, breaking the words at dashes and n-dashes:

BREAK 2
BREAK -
BREAK -- # n-dash

Breaking are recursive, so foo-bar, bar-foo and foo-foo--bar-bar would be valid
compounds.

Note: COMPOUNDRULE is better (or will be better) for handling dashes and other
compound joining characters or character strings. Use BREAK, if you want check words
with dashes or other joining characters and there is no time or possibility to describe
precise compound rules with COMPOUNDRULE (COMPOUNDRULE has handled only
the last suffixation of the compound word yet).

Note II: For command line spell checking, set WORDCHARS parameters:
WORDCHARS --- (see tests/break.*) example

COMPOUNDRULE number_of_compound_definitions

COMPOUNDRULE compound_pattern

Define custom compound patterns with a regex-like syntax. The first
COMPOUNDRULE is a header with the number of the following
COMPOUNDRULE definitions. Compound patterns consist compound flags
and star or question mark meta characters. A flag followed by a ‘*’ matches a
word sequence of 0 or more matches of words signed with this compound
flag. A flag followed by a ‘?’ matches a word sequence of 0 or 1 matches of a
word signed with this compound flag. See tests/compound*.* examples.

Note: ‘*’ and ‘?’ metacharacters work only with the default 8-bit character and
the UTF-8 FLAG types.

Note II: COMPOUNDRULE flags haven’t been compatible with the
COMPOUNDFLAG, COMPOUNDBEGIN, etc. compound flags yet (use
these flags on different words).

15

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

COMPOUNDMIN num

Minimum length of words in compound words. Default value is 3 letters.

COMPOUNDFLAG flag

Words signed with COMPOUNDFLAG may be in compound words (except
when word shorter than COMPOUNDMIN). Affixes with
COMPOUNDFLAG also permits compounding of affixed words.

COMPOUNDBEGIN flag

Words signed with COMPOUNDBEGIN (or with a signed affix) may be first
elements in compound words.

COMPOUNDLAST flag

Words signed with COMPOUNDLAST (or with a signed affix) may be last
elements in compound words.

COMPOUNDMIDDLE flag

Words signed with COMPOUNDMIDDLE (or with a signed affix) may be
middle elements in compound words.

ONLYINCOMPOUND flag

Suffixes signed with ONLYINCOMPOUND flag may be only inside of
compounds (Fuge-elements in German, fogemorphemes in Swedish).
ONLYINCOMPOUND flag works also with words (see
tests/onlyincompound.*).

COMPOUNDPERMITFLAG flag

Prefixes are allowed at the beginning of compounds, suffixes are allowed at
the end of compounds by default. Affixes with COMPOUNDPERMITFLAG
may be inside of compounds.

COMPOUNDFORBIDFLAG flag

Suffixes with this flag forbid compounding of the affixed word.

COMPOUNDROOT flag

COMPOUNDROOT flag signs the compounds in the dictionary (Now it is
used only in the Hungarian language specific code).

COMPOUNDWORDMAX number

16

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

Set maximum word count in a compound word. (Default is unlimited.)

CHECKCOMPOUNDDUP

Forbid word duplication in compounds (e.g. foofoo).

CHECKCOMPOUNDREP

Forbid compounding, if the (usually bad) compound word may be a non
compound word with a REP fault. Useful for languages with ‘compound
friendly’ orthography.

CHECKCOMPOUNDCASE

Forbid upper case characters at word bound in compounds.

CHECKCOMPOUNDTRIPLE

Forbid compounding, if compound word contains triple letters (e.g. foo|ox or
xo|oof). Bug: missing multi-byte character support in UTF-8 encoding (works
only for 7-bit ASCII characters).

CHECKCOMPOUNDPATTERN number_of_checkcompoundpattern_definitions

CHECKCOMPOUNDPATTERN endchars beginchars

Forbid compounding, if first word in compound ends with endchars, and next
word begins with beginchars.

COMPOUNDSYLLABLE max_syllable vowels

Need for special compounding rules in Hungarian. First parameter is the
maximum syllable number, that may be in a compound, if words in
compounds are more than COMPOUNDWORDMAX. Second parameter is
the list of vowels (for calculating syllables).

SYLLABLENUM flags

Need for special compounding rules in Hungarian.

OPTIONS FOR AFFIX CREATION
PFX flag cross_product number

PFX flag stripping prefix condition [morphological_fields...]

SFX flag cross_product number

17

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

SFX flag stripping suffix condition [morphological_fields...]

An affix is either a prefix or a suffix attached to root words to make other
words. We can define affix classes with arbitrary number affix rules. Affix
classes are signed with affix flags. The first line of an affix class definition is
the header. The fields of an affix class header:

(0) Option name (PFX or SFX)

(1) Flag (name of the affix class)

(2) Cross product (permission to combine prefixes and suffixes). Possible
values: Y (yes) or N (no)

(3) Line count of the following rules.

Fields of an affix rules:

(0) Option name

(1) Flag

(2) stripping characters from beginning (at prefix rules) or end (at suffix rules)
of the word

(3) affix (optionally with flags of continuation classes, separated by a slash)

(4) condition.

Zero stripping or affix are indicated by zero. Zero condition is indicated by
dot. Condition is a simplified, regular expression-like pattern, which must be
met before the affix can be applied. (Dot signs an arbitrary character.
Characters in braces sign an arbitrary character from the character subset.
Dash hasn’t got special meaning, but circumflex (^) next the first brace sets
the complementer character set.)

(5) Optional morphological fields separated by spaces or tabulators.

OTHER OPTIONS
CIRCUMFIX flag

Affixes signed with CIRCUMFIX flag may be on a word when this word also
has a prefix with CIRCUMFIX flag and vice versa.

18

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

FORBIDDENWORD flag

This flag signs forbidden word form. Because affixed forms are also
forbidden, we can subtract a subset from set of the accepted affixed and
compound words.

KEEPCASE flag

Forbid uppercased and capitalized forms of words signed with KEEPCASE
flags. Useful for special orthographies (measurements and currency often keep
their case in uppercased texts) and writing systems (e.g. keeping lower case of
IPA characters). Note: With CHECKSHARPS declaration, words with sharp s
and KEEPCASE flag may be capitalized and uppercased, but uppercased
forms of these words may not contain sharp s, only SS.

LEMMA_PRESENT flag

Not used in Hunspell 1.2. Use "st:" field instead of LEMMA_PRESENT.

NEEDAFFIX flag

This flag signs virtual stems in the dictionary. Only affixed forms of these
words will be accepted by Hunspell. Except, if the dictionary word has a
homonym or a zero affix. NEEDAFFIX works also with prefixes and prefix +
suffix combinations (see tests/pseudoroot5.*).

PSEUDOROOT flag

Deprecated. (Former name of the NEEDAFFIX option.)

SUBSTANDARD flag

SUBSTANDARD flag signs affix rules and dictionary words (allomorphs) not
used in morphological generation (and in suggestion in the future versions).
See also NOSUGGEST.

WORDCHARS characters

WORDCHARS extends tokenizer of Hunspell command line interface with
additional word character. For example, dot, dash, n-dash, numbers, percent
sign are word character in Hungarian.

CHECKSHARPS

SS letter pair in uppercased (German) words may be upper case sharp s (ß).
Hunspell can handle this special casing with the CHECKSHARPS declaration
(see also KEEPCASE flag and tests/germancompounding example) in both

19

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

spelling and suggestion.

Morphological analysis
Hunspell’s dictionary items and affix rules may have optional space or tabulator separated
morphological description fields, started with 3-character (two letters and a colon) field
IDs:

 word/flags po:noun is:nom

Example: We define a simple resource with morphological informations, a derivative
suffix (ds:) and a part of speech category (po:):

Affix file:

 SFX X Y 1
 SFX X 0 able . ds:able

Dictionary file:

 drink/X po:verb

Test file:

 drink
 drinkable

Test:

 $ analyze test.aff test.dic test.txt
 > drink
 analyze(drink) = po:verb
 stem(drink) = po:verb
 > drinkable
 analyze(drinkable) = po:verb ds:able
 stem(drinkable) = drinkable

You can see in the example, that the analyzer concatenates the morphological fields in
item and arrangement style.

Optional data fields
Default morphological and other IDs (used in suggestion, stemming and morphological
generation):

ph: Alternative transliteration for better suggestion. It’s useful for words with
foreign pronunciation. (Dictionary based phonetic suggestion.) For example:

Marseille ph:maarsayl

20

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

st: Stem. Optional: default stem is the dictionary item in morphological analysis.
Stem field is useful for virtual stems (dictionary words with NEEDAFFIX flag)
and morphological exceptions instead of new, single used morphological rules.

feet st:foot is:plural
mice st:mouse is:plural
teeth st:tooth is:plural

Word forms with multiple stems need multiple dictionary items:

lay po:verb st:lie is:past_2
lay po:verb is:present
lay po:noun

al: Allomorph(s). A dictionary item is the stem of its allomorphs. Morphological
generation needs stem, allomorph and affix fields.

sing al:sang al:sung
sang st:sing
sung st:sing

po: Part of speech category.

ds: Derivational suffix(es). Stemming doesn’t remove derivational suffixes.
Morphological generation depends on the order of the suffix fields.

In affix rules:

SFX Y Y 1
SFX Y 0 ly . ds:ly_adj

In the dictionary:

ably st:able ds:ly_adj
able al:ably

is: Inflectional suffix(es). All inflectional suffixes are removed by stemming.
Morphological generation depends on the order of the suffix fields.

feet st:foot is:plural

ts: Terminal suffix(es). Terminal suffix fields are inflectional suffix fields
"removed" by additional (not terminal) suffixes.

Useful for zero morphemes and affixes removed by splitting rules.

work/D ts:present

SFX D Y 2

21

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

SFX D 0 ed . is:past_1
SFX D 0 ed . is:past_2

Typical example of the terminal suffix is the zero morpheme of the nominative case.

sp: Surface prefix. Temporary solution for adding prefixes to the stems and
generated word forms. See tests/morph.* example.

pa: Parts of the compound words. Output fields of morphological analysis for
stemming.

dp: Planned: derivational prefix.

ip: Planned: inflectional prefix.

tp: Planned: terminal prefix.

Twofold suffix stripping
Ispell’s original algorithm strips only one suffix. Hunspell can strip another one yet (or a
plus prefix in COMPLEXPREFIXES mode).

The twofold suffix stripping is a significant improvement in handling of immense number
of suffixes, that characterize agglutinative languages.

A second ‘s’ suffix (affix class Y) will be the continuation class of the suffix ‘able’ in the
following example:

 SFX Y Y 1
 SFX Y 0 s .

SFX X Y 1
 SFX X 0 able/Y .

Dictionary file:

 drink/X

Test file:

 drink
 drinkable
 drinkables

Test:

 $ hunspell -m -d test <test.txt
 drink st:drink
 drinkable st:drink fl:X
 drinkables st:drink fl:X fl:Y

22

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

Theoretically with the twofold suffix stripping needs only the square root of the number
of suffix rules, compared with a Hunspell implementation. In our practice, we could have
elaborated the Hungarian inflectional morphology with twofold suffix stripping.

Extended affix classes
Hunspell can handle more than 65000 affix classes. There are three new syntax for giving
flags in affix and dictionary files.

FLAG long command sets 2-character flags:

 FLAG long
 SFX Y1 Y 1
 SFX Y1 0 s 1

Dictionary record with the Y1, Z3, F? flags:

 foo/Y1Z3F?

FLAG num command sets numerical flags separated by comma:

 FLAG num
 SFX 65000 Y 1
 SFX 65000 0 s 1

Dictionary example:

 foo/65000,12,2756

The third one is the Unicode character flags.

Homonyms
Hunspell’s dictionary can contain repeating elements that are homonyms:

 work/A po:verb
 work/B po:noun

An affix file:

 SFX A Y 1
 SFX A 0 s . sf:sg3

SFX B Y 1
 SFX B 0 s . is:plur

Test file:

 works

Test:

23

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

 $ hunspell -d test -m <testwords
 work st:work po:verb is:sg3
 work st:work po:noun is:plur

This feature also gives a way to forbid illegal prefix/suffix combinations.

Prefix--suffix dependencies
An interesting side-effect of multi-step stripping is, that the appropriate treatment of
circumfixes now comes for free. For instance, in Hungarian, superlatives are formed by
simultaneous prefixation of leg- and suffixation of -bb to the adjective base. A problem
with the one-level architecture is that there is no way to render lexical licensing of
particular prefixes and suffixes interdependent, and therefore incorrect forms are
recognized as valid, i.e. *legvén = leg + vén ‘old’. Until the introduction of clusters, a
special treatment of the superlative had to be hardwired in the earlier HunSpell code.
This may have been legitimate for a single case, but in fact prefix--suffix dependences are
ubiquitous in category-changing derivational patterns (cf. English payable, non-payable
but *non-pay or drinkable, undrinkable but *undrink). In simple words, here, the prefix
un- is legitimate only if the base drink is suffixed with -able. If both these patters are
handled by on-line affix rules and affix rules are checked against the base only, there is no
way to express this dependency and the system will necessarily over- or undergenerate.

In next example, suffix class R have got a prefix ‘continuation’ class (class P).

PFX P Y 1
PFX P 0 un . [prefix_un]+

SFX S Y 1
SFX S 0 s . +PL

SFX Q Y 1
SFX Q 0 s . +3SGV

SFX R Y 1
SFX R 0 able/PS . +DER_V_ADJ_ABLE

Dictionary:

2

drink/
RQ

[verb]

drink/
S

[noun]

Morphological analysis:

> drink
drink[verb]

24

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

drink[noun]
> drinks
drink[verb]+3SGV
drink[noun]+PL
> drinkable
drink[verb]+DER_V_ADJ_ABLE
> drinkables
drink[verb]+DER_V_ADJ_ABLE+PL
> undrinkable
[prefix_un]+drink[verb]+DER_V_ADJ_ABLE
> undrinkables
[prefix_un]+drink[verb]+DER_V_ADJ_ABLE+PL
> undrink
Unknown word.
> undrinks
Unknown word.

Circumfix
Conditional affixes implemented by a continuation class are not enough for circumfixes,
because a circumfix is one affix in morphology. We also need CIRCUMFIX option for
correct morphological analysis.

circumfixes: ~ obligate prefix/suffix combinations
superlative in Hungarian: leg- (prefix) AND -bb (suffix)
nagy, nagyobb, legnagyobb, legeslegnagyobb
(great, greater, greatest, most greatest)

CIRCUMFIX X

PFX A Y 1
PFX A 0 leg/X .

PFX B Y 1
PFX B 0 legesleg/X .

SFX C Y 3
SFX C 0 obb . +COMPARATIVE
SFX C 0 obb/AX . +SUPERLATIVE
SFX C 0 obb/BX . +SUPERSUPERLATIVE

Dictionary:

1

nagy/
C

[MN]

Analysis:

> nagy
nagy[MN]
> nagyobb
nagy[MN]+COMPARATIVE
> legnagyobb
nagy[MN]+SUPERLATIVE

25

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
TABS

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

> legeslegnagyobb
nagy[MN]+SUPERSUPERLATIVE

Compounds
Allowing free compounding yields decrease in precision of recognition, not to mention
stemming and morphological analysis. Although lexical switches are introduced to license
compounding of bases by Ispell, this proves not to be restrictive enough. For example:

affix file
COMPOUNDFLAG X

2
foo/X
bar/X

With this resource, foobar and barfoo also are accepted words.

This has been improved upon with the introduction of direction-sensitive compounding,
i.e., lexical features can specify separately whether a base can occur as leftmost or
rightmost constituent in compounds. This, however, is still insufficient to handle the
intricate patterns of compounding, not to mention idiosyncratic (and language specific)
norms of hyphenation.

The Hunspell algorithm currently allows any affixed form of words, which are lexically
marked as potential members of compounds. Hunspell improved this, and its recursive
compound checking rules makes it possible to implement the intricate spelling
conventions of Hungarian compounds. For example, using COMPOUNDWORDMAX,
COMPOUNDSYLLABLE, COMPOUNDROOT, SYLLABLENUM options can be set
the noteworthy Hungarian ‘6-3’ rule. Further example in Hungarian, derivate suffixes
often modify compounding properties. Hunspell allows the compounding flags on the
affixes, and there are two special flags (COMPOUNDPERMITFLAG and
(COMPOUNDFORBIDFLAG) to permit or prohibit compounding of the derivations.

Suffixes with this flag forbid compounding of the affixed word.

We also need several Hunspell features for handling German compounding:

German compounding

set language to handle special casing of German sharp s

LANG de_DE

compound flags

COMPOUNDBEGIN U
COMPOUNDMIDDLE V
COMPOUNDEND W

Prefixes are allowed at the beginning of compounds,
suffixes are allowed at the end of compounds by default:
(prefix)?(root)+(affix)?

26

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

Affixes with COMPOUNDPERMITFLAG may be inside of compounds.
COMPOUNDPERMITFLAG P

for German fogemorphemes (Fuge-element)
Hint: ONLYINCOMPOUND is not required everywhere, but the
checking will be a little faster with it.

ONLYINCOMPOUND X

forbid uppercase characters at compound word bounds
CHECKCOMPOUNDCASE

for handling Fuge-elements with dashes (Arbeits-)
dash will be a special word

COMPOUNDMIN 1
WORDCHARS -

compound settings and fogemorpheme for ‘Arbeit’

SFX A Y 3
SFX A 0 s/UPX .
SFX A 0 s/VPDX .
SFX A 0 0/WXD .

SFX B Y 2
SFX B 0 0/UPX .
SFX B 0 0/VWXDP .

a suffix for ‘Computer’

SFX C Y 1
SFX C 0 n/WD .

for forbid exceptions (*Arbeitsnehmer)

FORBIDDENWORD Z

dash prefix for compounds with dash (Arbeits-Computer)

PFX - Y 1
PFX - 0 -/P .

decapitalizing prefix
circumfix for positioning in compounds

PFX D Y 29
PFX D A a/PX A
PFX D Ä ä/PX Ä
 .
 .
PFX D Y y/PX Y
PFX D Z z/PX Z

Example dictionary:

4
Arbeit/A-
Computer/BC-

27

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

-/W
Arbeitsnehmer/Z

Accepted compound compound words with the previous resource:

Computer
Computern
Arbeit
Arbeits-
Computerarbeit
Computerarbeits-
Arbeitscomputer
Arbeitscomputern
Computerarbeitscomputer
Computerarbeitscomputern
Arbeitscomputerarbeit
Computerarbeits-Computer
Computerarbeits-Computern

Not accepted compoundings:

computer
arbeit
Arbeits
arbeits
ComputerArbeit
ComputerArbeits
Arbeitcomputer
ArbeitsComputer
Computerarbeitcomputer
ComputerArbeitcomputer
ComputerArbeitscomputer
Arbeitscomputerarbeits
Computerarbeits-computer
Arbeitsnehmer

This solution is still not ideal, however, and will be replaced by a pattern-based
compound-checking algorithm which is closely integrated with input buffer tokenization.
Patterns describing compounds come as a separate input resource that can refer to high-
level properties of constituent parts (e.g. the number of syllables, affix flags, and
containment of hyphens). The patterns are matched against potential segmentations of
compounds to assess wellformedness.

28

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

Unicode character encoding
Both Ispell and Myspell use 8-bit ASCII character encoding, which is a major deficiency
when it comes to scalability. Although a language like Hungarian has a standard ASCII
character set (ISO 8859-2), it fails to allow a full implementation of Hungarian
orthographic conventions. For instance, the ’--’ symbol (n-dash) is missing from this
character set contrary to the fact that it is not only the official symbol to delimit
parenthetic clauses in the language, but it can be in compound words as a special ’big’
hyphen. MySpell has got some 8-bit encoding tables, but there are languages without
standard 8-bit encoding, too. For example, a lot of African languages have non-latin or
extended latin characters.

Similarly, using the original spelling of certain foreign names like Ångström or Molière is
encouraged by the Hungarian spelling norm, and, since characters ’Å’ and ’è’ are not part
of ISO 8859-2, when they combine with inflections containing characters only in ISO
8859-2 (like elative -bl, allative -tl or delative -rl with double acute), these result in words
(like Ångströmrl or Molière-tl.) that can not be encoded using any single ASCII encoding
scheme.

The problems raised in relation to 8-bit ASCII encoding have long been recognized by
proponents of Unicode. It is clear that trading efficiency for encoding-independence has
its advantages when it comes a truly multi-lingual application. There is implemented a
memory and time efficient Unicode handling in Hunspell. In non-UTF-8 character
encodings Hunspell works with the original 8-bit strings. In UTF-8 encoding, affixes and
words are stored in UTF-8, during the analysis are handled in mostly UTF-8, under
condition checking and suggestion are converted to UTF-16. Unicode text analysis and
spell checking have a minimal (0-20%) time overhead and minimal or reasonable
memory overhead depends from the language (its UTF-8 encoding and affixation).

SEE ALSO
hunspell (1), ispell (1), ispell (4)

29

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

Hunspell API

NAME
hunspell - spell checking, stemming, morphological generation and analysis

30

, 23.03.09
INDENTATION

SYNOPSIS
#include <hunspell/hunspell.hxx> /* or */
#include <hunspell/hunspell.h>

Hunspell(const char *affpath, const char *dpath);

Hunspell(const char *affpath, const char *dpath, const char * key);

~Hunspell();

int add_dic(const char *dpath);

int add_dic(const char *dpath, const char *key);

int spell(const char *word);

int spell(const char *word, int *info, char **root);

int suggest(char***slst, const char *word);

int analyze(char***slst, const char *word);

int stem(char***slst, const char *word);

int stem(char***slst, char **morph, int n);

int generate(char***slst, const char *word, const char *word2);

int generate(char***slst, const char *word, char **desc, int n);

void free_list(char ***slst, int n);

int add(const char *word);

int add_with_affix(const char *word, const char *example);

int remove(const char *word);

char * get_dic_encoding();

const char * get_wordchars();

unsigned short * get_wordchars_utf16(int *len);

struct cs_info * get_csconv();

const char * get_version();

31

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

DESCRIPTION
The Hunspell library routines give the user word-level linguistic functions: spell
checking and correction, stemming, morphological generation and analysis in item-and-
arrangement style.

The optional C header contains the C interface of the C++ library with Hunspell_create
and Hunspell_destroy constructor and destructor, and an extra HunHandle parameter (the
allocated object) in the wrapper functions (see in the C header file hunspell.h).

The basic spelling functions, spell() and suggest() can be used for stemming,
morphological generation and analysis by XML input texts (see XML API).

Constructor and destructor

Hunspell’s constructor needs paths of the affix and dictionary files. See the hunspell(4)
manual page for the dictionary format. Optional key parameter is for dictionaries
encrypted by the hzip tool of the Hunspell distribution.

Extra dictionaries

The add_dic() function load an extra dictionary file. The extra dictionaries use the affix
file of the allocated Hunspell object. Maximal number of the extra dictionaries is limited
in the source code (20).

Spelling and correction

The spell() function returns non-zero, if the input word is recognised by the spell checker,
and a zero value if not. Optional reference variables return a bit array (info) and the root
word of the input word. Info bits checked with the SPELL_COMPOUND and
SPELL_FORBIDDEN macros sign compound words and explicit forbidden words. The
suggest() function has two input parameters, a reference variable of the output suggestion
list, and an input word. The function returns the number of the suggestions. The reference
variable will contain the address of the newly allocated suggestion list or NULL, if the
return value of suggest() is zero. Maximal number of the suggestions is limited in the
source code.

The spell() and suggest() can recognize XML input, see the XML API section.

Morphological functions

The plain stem() and analyze() functions are similar to the suggest(), but instead of
suggestions, return stems and results of the morphological analysis. The plain generate()
waits a second word, too. This extra word and its affixation will be the model of the
morphological generation of the requested forms of the first word.

The extended stem() and generate() use the results of a morphological analysis:

char ** result, result2;
int n1 = analyze(&result, "words");

32

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

int n2 = stem(&result2, result, n1);

The morphological annotation of the Hunspell library has fixed (two letter and a colon)
field identifiers, see the hunspell(4) manual page.

char ** result;
char * affix = "is:plural"; // description depends from dictionaries, too
int n = generate(&result, "word", &affix, 1);
for (int i = 0; i < n; i++) printf("%s0, result[i]);

Memory deallocation

The free_list() function frees the memory allocated by suggest(), analyze, generate and
stem() functions.

Other functions

The add(), add_with_affix() and remove() are helper functions of a personal dictionary
implementation to add and remove words from the base dictionary in run-time. The
add_with_affix() uses a second word as a model of the enabled affixation of the new
word.

The get_dic_encoding() function returns "ISO8859-1" or the character encoding defined
in the affix file with the "SET" keyword.

The get_csconv() function returns the 8-bit character case table of the encoding of the
dictionary.

The get_wordchars() and get_wordchars_utf16() return the extra word characters definied
in affix file for tokenization by the "WORDCHARS" keyword.

The get_version() returns the version string of the library.

XML API

The spell() function returns non-zero for the "<?xml?>" input indicating the XML API
support. The suggest() function stems, analyzes and generates the forms of the input
word, if it was added by one of the following "SPELLML" syntaxes:

<?xml?>
<query type="analyze">
<word>dogs</word>
</query>

<?xml?>
<query type="stem">

33

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

<word>dogs</word>
</query>

<?xml?>
<query type="generate">
<word>dog</word>
<word>cats</word>
</query>

<?xml?>
<query type="generate">
<word>dog</word>
<code><a>is:pl<a>is:poss</code>
</query>

The outputs of the type="stem" query and the stem() library function are the same. The
output of the type="analyze" query is a string contained a
<code><a>result1<a>result2...</code> element. This element can be used in the
second syntax of the type="generate" query.

EXAMPLE
See analyze.cxx in the Hunspell distribution.

AUTHORS
Hunspell based on Ispell’s spell checking algorithms and OpenOffice.org’s Myspell
source code.

Author of International Ispell is Geoff Kuenning. Author of MySpell is Kevin Hendricks.
Author of Hunspell is László Németh. Author of the original C API is Caolan McNamara.
Author of the Aspell table-driven phonetic transcription algorithm and code is Björn
Jacke. See also THANKS and Changelog files of Hunspell distribution.

34

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

, 23.03.09
INDENTATION

	Hunspell usage notes
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXAMPLES
	ENVIRONMENT
	FILES
	SEE ALSO
	AUTHOR
	BUGS

	Hunspell dictionary development
	NAME
	DESCRIPTION
	GENERAL OPTIONS
	OPTIONS FOR SUGGESTION
	OPTIONS FOR COMPOUNDING
	OPTIONS FOR AFFIX CREATION
	OTHER OPTIONS
	Morphological analysis
	Optional data fields
	Twofold suffix stripping
	Extended affix classes
	Homonyms
	Prefix--suffix dependencies
	Circumfix
	Compounds
	Unicode character encoding
	SEE ALSO

	Hunspell API
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLE
	AUTHORS

